mirror of
https://github.com/coredns/coredns.git
synced 2025-11-01 10:43:17 -04:00
Implement a DNS zone
Full implementation, DNS (and in the future DNSSEC). Returns answer in a hopefully standards compliant way. Testing with my miek.nl zone are included as well. This should correctly handle nodata, nxdomain and cnames.
This commit is contained in:
585
middleware/file/tree/tree.go
Normal file
585
middleware/file/tree/tree.go
Normal file
@@ -0,0 +1,585 @@
|
||||
// Copyright ©2012 The bíogo Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found at the end of this file.
|
||||
|
||||
// Package tree implements Left-Leaning Red Black trees as described by Robert Sedgewick.
|
||||
//
|
||||
// More details relating to the implementation are available at the following locations:
|
||||
//
|
||||
// http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
|
||||
// http://www.cs.princeton.edu/~rs/talks/LLRB/Java/RedBlackBST.java
|
||||
// http://www.teachsolaisgames.com/articles/balanced_left_leaning.html
|
||||
//
|
||||
// Heavily modified by Miek Gieben for use in DNS zones.
|
||||
package tree
|
||||
|
||||
// TODO(miek): locking? lockfree
|
||||
// TODO(miek): fix docs
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/miekg/dns"
|
||||
)
|
||||
|
||||
const (
|
||||
TD234 = iota
|
||||
BU23
|
||||
)
|
||||
|
||||
// Operation mode of the LLRB tree.
|
||||
const Mode = BU23
|
||||
|
||||
func init() {
|
||||
if Mode != TD234 && Mode != BU23 {
|
||||
panic("tree: unknown mode")
|
||||
}
|
||||
}
|
||||
|
||||
type Elem struct {
|
||||
m map[uint16][]dns.RR
|
||||
}
|
||||
|
||||
// newElem returns a new elem
|
||||
func newElem(rr dns.RR) *Elem {
|
||||
e := Elem{m: make(map[uint16][]dns.RR)}
|
||||
e.m[rr.Header().Rrtype] = []dns.RR{rr}
|
||||
return &e
|
||||
}
|
||||
|
||||
// Types returns the types from with type qtype from e.
|
||||
func (e *Elem) Types(qtype uint16) []dns.RR {
|
||||
if rrs, ok := e.m[qtype]; ok {
|
||||
// TODO(miek): length should never be zero here.
|
||||
return rrs
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (e *Elem) All() []dns.RR {
|
||||
list := []dns.RR{}
|
||||
for _, rrs := range e.m {
|
||||
list = append(list, rrs...)
|
||||
}
|
||||
return list
|
||||
}
|
||||
|
||||
func (e *Elem) Insert(rr dns.RR) {
|
||||
t := rr.Header().Rrtype
|
||||
if e.m == nil {
|
||||
e.m = make(map[uint16][]dns.RR)
|
||||
e.m[t] = []dns.RR{rr}
|
||||
return
|
||||
}
|
||||
rrs, ok := e.m[t]
|
||||
if !ok {
|
||||
e.m[t] = []dns.RR{rr}
|
||||
return
|
||||
}
|
||||
for _, er := range rrs {
|
||||
if equalRdata(er, rr) {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
rrs = append(rrs, rr)
|
||||
e.m[t] = rrs
|
||||
}
|
||||
|
||||
// Delete removes rr from e. When e is empty after the removal the returned bool is true.
|
||||
func (e *Elem) Delete(rr dns.RR) (empty bool) {
|
||||
t := rr.Header().Rrtype
|
||||
if e.m == nil {
|
||||
return
|
||||
}
|
||||
rrs, ok := e.m[t]
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
for i, er := range rrs {
|
||||
if equalRdata(er, rr) {
|
||||
rrs = removeFromSlice(rrs, i)
|
||||
e.m[t] = rrs
|
||||
empty = len(rrs) == 0
|
||||
if empty {
|
||||
delete(e.m, t)
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// TODO(miek): need case ignore compare that is more efficient.
|
||||
func Less(a *Elem, rr dns.RR) int {
|
||||
aname := ""
|
||||
for _, ar := range a.m {
|
||||
aname = strings.ToLower(ar[0].Header().Name)
|
||||
break
|
||||
}
|
||||
rname := strings.ToLower(rr.Header().Name)
|
||||
if aname == rname {
|
||||
return 0
|
||||
}
|
||||
if aname < rname {
|
||||
return -1
|
||||
}
|
||||
return 1
|
||||
}
|
||||
|
||||
// Assuming the same type and name this will check if the rdata is equal as well.
|
||||
func equalRdata(a, b dns.RR) bool {
|
||||
switch x := a.(type) {
|
||||
case *dns.A:
|
||||
return x.A.Equal(b.(*dns.A).A)
|
||||
case *dns.AAAA:
|
||||
return x.AAAA.Equal(b.(*dns.AAAA).AAAA)
|
||||
case *dns.MX:
|
||||
if x.Mx == b.(*dns.MX).Mx && x.Preference == b.(*dns.MX).Preference {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// removeFromSlice removes index i from the slice.
|
||||
func removeFromSlice(rrs []dns.RR, i int) []dns.RR {
|
||||
if i >= len(rrs) {
|
||||
return rrs
|
||||
}
|
||||
rrs = append(rrs[:i], rrs[i+1:]...)
|
||||
return rrs
|
||||
}
|
||||
|
||||
// A Color represents the color of a Node.
|
||||
type Color bool
|
||||
|
||||
const (
|
||||
// Red as false give us the defined behaviour that new nodes are red. Although this
|
||||
// is incorrect for the root node, that is resolved on the first insertion.
|
||||
Red Color = false
|
||||
Black Color = true
|
||||
)
|
||||
|
||||
// A Node represents a node in the LLRB tree.
|
||||
type Node struct {
|
||||
Elem *Elem
|
||||
Left, Right *Node
|
||||
Color Color
|
||||
}
|
||||
|
||||
// A Tree manages the root node of an LLRB tree. Public methods are exposed through this type.
|
||||
type Tree struct {
|
||||
Root *Node // Root node of the tree.
|
||||
Count int // Number of elements stored.
|
||||
}
|
||||
|
||||
// Helper methods
|
||||
|
||||
// color returns the effect color of a Node. A nil node returns black.
|
||||
func (n *Node) color() Color {
|
||||
if n == nil {
|
||||
return Black
|
||||
}
|
||||
return n.Color
|
||||
}
|
||||
|
||||
// (a,c)b -rotL-> ((a,)b,)c
|
||||
func (n *Node) rotateLeft() (root *Node) {
|
||||
// Assumes: n has two children.
|
||||
root = n.Right
|
||||
n.Right = root.Left
|
||||
root.Left = n
|
||||
root.Color = n.Color
|
||||
n.Color = Red
|
||||
return
|
||||
}
|
||||
|
||||
// (a,c)b -rotR-> (,(,c)b)a
|
||||
func (n *Node) rotateRight() (root *Node) {
|
||||
// Assumes: n has two children.
|
||||
root = n.Left
|
||||
n.Left = root.Right
|
||||
root.Right = n
|
||||
root.Color = n.Color
|
||||
n.Color = Red
|
||||
return
|
||||
}
|
||||
|
||||
// (aR,cR)bB -flipC-> (aB,cB)bR | (aB,cB)bR -flipC-> (aR,cR)bB
|
||||
func (n *Node) flipColors() {
|
||||
// Assumes: n has two children.
|
||||
n.Color = !n.Color
|
||||
n.Left.Color = !n.Left.Color
|
||||
n.Right.Color = !n.Right.Color
|
||||
}
|
||||
|
||||
// fixUp ensures that black link balance is correct, that red nodes lean left,
|
||||
// and that 4 nodes are split in the case of BU23 and properly balanced in TD234.
|
||||
func (n *Node) fixUp() *Node {
|
||||
if n.Right.color() == Red {
|
||||
if Mode == TD234 && n.Right.Left.color() == Red {
|
||||
n.Right = n.Right.rotateRight()
|
||||
}
|
||||
n = n.rotateLeft()
|
||||
}
|
||||
if n.Left.color() == Red && n.Left.Left.color() == Red {
|
||||
n = n.rotateRight()
|
||||
}
|
||||
if Mode == BU23 && n.Left.color() == Red && n.Right.color() == Red {
|
||||
n.flipColors()
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
func (n *Node) moveRedLeft() *Node {
|
||||
n.flipColors()
|
||||
if n.Right.Left.color() == Red {
|
||||
n.Right = n.Right.rotateRight()
|
||||
n = n.rotateLeft()
|
||||
n.flipColors()
|
||||
if Mode == TD234 && n.Right.Right.color() == Red {
|
||||
n.Right = n.Right.rotateLeft()
|
||||
}
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
func (n *Node) moveRedRight() *Node {
|
||||
n.flipColors()
|
||||
if n.Left.Left.color() == Red {
|
||||
n = n.rotateRight()
|
||||
n.flipColors()
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// Len returns the number of elements stored in the Tree.
|
||||
func (t *Tree) Len() int {
|
||||
return t.Count
|
||||
}
|
||||
|
||||
// Get returns the first match of q in the Tree. If insertion without
|
||||
// replacement is used, this is probably not what you want.
|
||||
func (t *Tree) Get(rr dns.RR) *Elem {
|
||||
if t.Root == nil {
|
||||
return nil
|
||||
}
|
||||
n := t.Root.search(rr)
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
return n.Elem
|
||||
}
|
||||
|
||||
func (n *Node) search(rr dns.RR) *Node {
|
||||
for n != nil {
|
||||
switch c := Less(n.Elem, rr); {
|
||||
case c == 0:
|
||||
return n
|
||||
case c < 0:
|
||||
n = n.Left
|
||||
default:
|
||||
n = n.Right
|
||||
}
|
||||
}
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
// Insert inserts the Comparable e into the Tree at the first match found
|
||||
// with e or when a nil node is reached. Insertion without replacement can
|
||||
// specified by ensuring that e.Compare() never returns 0. If insert without
|
||||
// replacement is performed, a distinct query Comparable must be used that
|
||||
// can return 0 with a Compare() call.
|
||||
func (t *Tree) Insert(rr dns.RR) {
|
||||
var d int
|
||||
t.Root, d = t.Root.insert(rr)
|
||||
t.Count += d
|
||||
t.Root.Color = Black
|
||||
}
|
||||
|
||||
func (n *Node) insert(rr dns.RR) (root *Node, d int) {
|
||||
if n == nil {
|
||||
return &Node{Elem: newElem(rr)}, 1
|
||||
} else if n.Elem == nil {
|
||||
n.Elem = newElem(rr)
|
||||
return n, 1
|
||||
}
|
||||
|
||||
if Mode == TD234 {
|
||||
if n.Left.color() == Red && n.Right.color() == Red {
|
||||
n.flipColors()
|
||||
}
|
||||
}
|
||||
|
||||
switch c := Less(n.Elem, rr); {
|
||||
case c == 0:
|
||||
n.Elem.Insert(rr)
|
||||
case c < 0:
|
||||
n.Left, d = n.Left.insert(rr)
|
||||
default:
|
||||
n.Right, d = n.Right.insert(rr)
|
||||
}
|
||||
|
||||
if n.Right.color() == Red && n.Left.color() == Black {
|
||||
n = n.rotateLeft()
|
||||
}
|
||||
if n.Left.color() == Red && n.Left.Left.color() == Red {
|
||||
n = n.rotateRight()
|
||||
}
|
||||
|
||||
if Mode == BU23 {
|
||||
if n.Left.color() == Red && n.Right.color() == Red {
|
||||
n.flipColors()
|
||||
}
|
||||
}
|
||||
|
||||
root = n
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// DeleteMin deletes the node with the minimum value in the tree. If insertion without
|
||||
// replacement has been used, the left-most minimum will be deleted.
|
||||
func (t *Tree) DeleteMin() {
|
||||
if t.Root == nil {
|
||||
return
|
||||
}
|
||||
var d int
|
||||
t.Root, d = t.Root.deleteMin()
|
||||
t.Count += d
|
||||
if t.Root == nil {
|
||||
return
|
||||
}
|
||||
t.Root.Color = Black
|
||||
}
|
||||
|
||||
func (n *Node) deleteMin() (root *Node, d int) {
|
||||
if n.Left == nil {
|
||||
return nil, -1
|
||||
}
|
||||
if n.Left.color() == Black && n.Left.Left.color() == Black {
|
||||
n = n.moveRedLeft()
|
||||
}
|
||||
n.Left, d = n.Left.deleteMin()
|
||||
|
||||
root = n.fixUp()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// DeleteMax deletes the node with the maximum value in the tree. If insertion without
|
||||
// replacement has been used, the right-most maximum will be deleted.
|
||||
func (t *Tree) DeleteMax() {
|
||||
if t.Root == nil {
|
||||
return
|
||||
}
|
||||
var d int
|
||||
t.Root, d = t.Root.deleteMax()
|
||||
t.Count += d
|
||||
if t.Root == nil {
|
||||
return
|
||||
}
|
||||
t.Root.Color = Black
|
||||
}
|
||||
|
||||
func (n *Node) deleteMax() (root *Node, d int) {
|
||||
if n.Left != nil && n.Left.color() == Red {
|
||||
n = n.rotateRight()
|
||||
}
|
||||
if n.Right == nil {
|
||||
return nil, -1
|
||||
}
|
||||
if n.Right.color() == Black && n.Right.Left.color() == Black {
|
||||
n = n.moveRedRight()
|
||||
}
|
||||
n.Right, d = n.Right.deleteMax()
|
||||
|
||||
root = n.fixUp()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Delete removes rr from the tree, is the node turns empty, that node is return with DeleteNode.
|
||||
func (t *Tree) Delete(rr dns.RR) {
|
||||
if t.Root == nil {
|
||||
return
|
||||
}
|
||||
// If there is an element, remove the rr from it
|
||||
el := t.Get(rr)
|
||||
if el == nil {
|
||||
t.DeleteNode(rr)
|
||||
return
|
||||
}
|
||||
// delete from this element
|
||||
empty := el.Delete(rr)
|
||||
if empty {
|
||||
t.DeleteNode(rr)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// DeleteNode deletes the node that matches e according to Compare(). Note that Compare must
|
||||
// identify the target node uniquely and in cases where non-unique keys are used,
|
||||
// attributes used to break ties must be used to determine tree ordering during insertion.
|
||||
func (t *Tree) DeleteNode(rr dns.RR) {
|
||||
if t.Root == nil {
|
||||
return
|
||||
}
|
||||
var d int
|
||||
t.Root, d = t.Root.delete(rr)
|
||||
t.Count += d
|
||||
if t.Root == nil {
|
||||
return
|
||||
}
|
||||
t.Root.Color = Black
|
||||
}
|
||||
|
||||
func (n *Node) delete(rr dns.RR) (root *Node, d int) {
|
||||
if Less(n.Elem, rr) < 0 {
|
||||
if n.Left != nil {
|
||||
if n.Left.color() == Black && n.Left.Left.color() == Black {
|
||||
n = n.moveRedLeft()
|
||||
}
|
||||
n.Left, d = n.Left.delete(rr)
|
||||
}
|
||||
} else {
|
||||
if n.Left.color() == Red {
|
||||
n = n.rotateRight()
|
||||
}
|
||||
if n.Right == nil && Less(n.Elem, rr) == 0 {
|
||||
return nil, -1
|
||||
}
|
||||
if n.Right != nil {
|
||||
if n.Right.color() == Black && n.Right.Left.color() == Black {
|
||||
n = n.moveRedRight()
|
||||
}
|
||||
if Less(n.Elem, rr) == 0 {
|
||||
n.Elem = n.Right.min().Elem
|
||||
n.Right, d = n.Right.deleteMin()
|
||||
} else {
|
||||
n.Right, d = n.Right.delete(rr)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
root = n.fixUp()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Return the minimum value stored in the tree. This will be the left-most minimum value if
|
||||
// insertion without replacement has been used.
|
||||
func (t *Tree) Min() *Elem {
|
||||
if t.Root == nil {
|
||||
return nil
|
||||
}
|
||||
return t.Root.min().Elem
|
||||
}
|
||||
|
||||
func (n *Node) min() *Node {
|
||||
for ; n.Left != nil; n = n.Left {
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// Return the maximum value stored in the tree. This will be the right-most maximum value if
|
||||
// insertion without replacement has been used.
|
||||
func (t *Tree) Max() *Elem {
|
||||
if t.Root == nil {
|
||||
return nil
|
||||
}
|
||||
return t.Root.max().Elem
|
||||
}
|
||||
|
||||
func (n *Node) max() *Node {
|
||||
for ; n.Right != nil; n = n.Right {
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// Floor returns the greatest value equal to or less than the query q according to q.Compare().
|
||||
func (t *Tree) Floor(rr dns.RR) *Elem {
|
||||
if t.Root == nil {
|
||||
return nil
|
||||
}
|
||||
n := t.Root.floor(rr)
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
return n.Elem
|
||||
}
|
||||
|
||||
func (n *Node) floor(rr dns.RR) *Node {
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
switch c := Less(n.Elem, rr); {
|
||||
case c == 0:
|
||||
return n
|
||||
case c < 0:
|
||||
return n.Left.floor(rr)
|
||||
default:
|
||||
if r := n.Right.floor(rr); r != nil {
|
||||
return r
|
||||
}
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// Ceil returns the smallest value equal to or greater than the query q according to q.Compare().
|
||||
func (t *Tree) Ceil(rr dns.RR) *Elem {
|
||||
if t.Root == nil {
|
||||
return nil
|
||||
}
|
||||
n := t.Root.ceil(rr)
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
return n.Elem
|
||||
}
|
||||
|
||||
func (n *Node) ceil(rr dns.RR) *Node {
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
switch c := Less(n.Elem, rr); {
|
||||
case c == 0:
|
||||
return n
|
||||
case c > 0:
|
||||
return n.Right.ceil(rr)
|
||||
default:
|
||||
if l := n.Left.ceil(rr); l != nil {
|
||||
return l
|
||||
}
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
/*
|
||||
Copyright ©2012 The bíogo Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
* Neither the name of the bíogo project nor the names of its authors and
|
||||
contributors may be used to endorse or promote products derived from this
|
||||
software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
Reference in New Issue
Block a user