mirror of
				https://github.com/coredns/coredns.git
				synced 2025-11-04 03:03:14 -05:00 
			
		
		
		
	* plugin/file: Rename do to walk, cleanup and document * This renames Do to Walk to be more inline with Go standards. Also make it return an error instead of a bool. Also give give walk access to rrs. Alternatively e.m could be exported, but just access the map of rrs should work as well. Another alternative would be adding a whole bunch of helper functions, but those need grab and return the data. Just having access to the rrs should be easiest for most Walks. * It adds Type and TypeForWildcard to show the different functions * *Removes* the identical RR check when inserting; this was only done for A, AAAA and MX and not finished; removed under the mantra garbage in garbage out. * Reuses Types to return all the types in an *tree.Elem Signed-off-by: Miek Gieben <miek@miek.nl> * better comments Signed-off-by: Miek Gieben <miek@miek.nl>
		
			
				
	
	
		
			455 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright ©2012 The bíogo Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found at the end of this file.
 | 
						|
 | 
						|
// Package tree implements Left-Leaning Red Black trees as described by Robert Sedgewick.
 | 
						|
//
 | 
						|
// More details relating to the implementation are available at the following locations:
 | 
						|
//
 | 
						|
// http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
 | 
						|
// http://www.cs.princeton.edu/~rs/talks/LLRB/Java/RedBlackBST.java
 | 
						|
// http://www.teachsolaisgames.com/articles/balanced_left_leaning.html
 | 
						|
//
 | 
						|
// Heavily modified by Miek Gieben for use in DNS zones.
 | 
						|
package tree
 | 
						|
 | 
						|
import "github.com/miekg/dns"
 | 
						|
 | 
						|
const (
 | 
						|
	td234 = iota
 | 
						|
	bu23
 | 
						|
)
 | 
						|
 | 
						|
// Operation mode of the LLRB tree.
 | 
						|
const mode = bu23
 | 
						|
 | 
						|
func init() {
 | 
						|
	if mode != td234 && mode != bu23 {
 | 
						|
		panic("tree: unknown mode")
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// A Color represents the color of a Node.
 | 
						|
type Color bool
 | 
						|
 | 
						|
const (
 | 
						|
	// Red as false give us the defined behaviour that new nodes are red. Although this
 | 
						|
	// is incorrect for the root node, that is resolved on the first insertion.
 | 
						|
	red   Color = false
 | 
						|
	black Color = true
 | 
						|
)
 | 
						|
 | 
						|
// A Node represents a node in the LLRB tree.
 | 
						|
type Node struct {
 | 
						|
	Elem        *Elem
 | 
						|
	Left, Right *Node
 | 
						|
	Color       Color
 | 
						|
}
 | 
						|
 | 
						|
// A Tree manages the root node of an LLRB tree. Public methods are exposed through this type.
 | 
						|
type Tree struct {
 | 
						|
	Root  *Node // Root node of the tree.
 | 
						|
	Count int   // Number of elements stored.
 | 
						|
}
 | 
						|
 | 
						|
// Helper methods
 | 
						|
 | 
						|
// color returns the effect color of a Node. A nil node returns black.
 | 
						|
func (n *Node) color() Color {
 | 
						|
	if n == nil {
 | 
						|
		return black
 | 
						|
	}
 | 
						|
	return n.Color
 | 
						|
}
 | 
						|
 | 
						|
// (a,c)b -rotL-> ((a,)b,)c
 | 
						|
func (n *Node) rotateLeft() (root *Node) {
 | 
						|
	// Assumes: n has two children.
 | 
						|
	root = n.Right
 | 
						|
	n.Right = root.Left
 | 
						|
	root.Left = n
 | 
						|
	root.Color = n.Color
 | 
						|
	n.Color = red
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// (a,c)b -rotR-> (,(,c)b)a
 | 
						|
func (n *Node) rotateRight() (root *Node) {
 | 
						|
	// Assumes: n has two children.
 | 
						|
	root = n.Left
 | 
						|
	n.Left = root.Right
 | 
						|
	root.Right = n
 | 
						|
	root.Color = n.Color
 | 
						|
	n.Color = red
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// (aR,cR)bB -flipC-> (aB,cB)bR | (aB,cB)bR -flipC-> (aR,cR)bB
 | 
						|
func (n *Node) flipColors() {
 | 
						|
	// Assumes: n has two children.
 | 
						|
	n.Color = !n.Color
 | 
						|
	n.Left.Color = !n.Left.Color
 | 
						|
	n.Right.Color = !n.Right.Color
 | 
						|
}
 | 
						|
 | 
						|
// fixUp ensures that black link balance is correct, that red nodes lean left,
 | 
						|
// and that 4 nodes are split in the case of BU23 and properly balanced in TD234.
 | 
						|
func (n *Node) fixUp() *Node {
 | 
						|
	if n.Right.color() == red {
 | 
						|
		if mode == td234 && n.Right.Left.color() == red {
 | 
						|
			n.Right = n.Right.rotateRight()
 | 
						|
		}
 | 
						|
		n = n.rotateLeft()
 | 
						|
	}
 | 
						|
	if n.Left.color() == red && n.Left.Left.color() == red {
 | 
						|
		n = n.rotateRight()
 | 
						|
	}
 | 
						|
	if mode == bu23 && n.Left.color() == red && n.Right.color() == red {
 | 
						|
		n.flipColors()
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) moveRedLeft() *Node {
 | 
						|
	n.flipColors()
 | 
						|
	if n.Right.Left.color() == red {
 | 
						|
		n.Right = n.Right.rotateRight()
 | 
						|
		n = n.rotateLeft()
 | 
						|
		n.flipColors()
 | 
						|
		if mode == td234 && n.Right.Right.color() == red {
 | 
						|
			n.Right = n.Right.rotateLeft()
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) moveRedRight() *Node {
 | 
						|
	n.flipColors()
 | 
						|
	if n.Left.Left.color() == red {
 | 
						|
		n = n.rotateRight()
 | 
						|
		n.flipColors()
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// Len returns the number of elements stored in the Tree.
 | 
						|
func (t *Tree) Len() int {
 | 
						|
	return t.Count
 | 
						|
}
 | 
						|
 | 
						|
// Search returns the first match of qname in the Tree.
 | 
						|
func (t *Tree) Search(qname string) (*Elem, bool) {
 | 
						|
	if t.Root == nil {
 | 
						|
		return nil, false
 | 
						|
	}
 | 
						|
	n, res := t.Root.search(qname)
 | 
						|
	if n == nil {
 | 
						|
		return nil, res
 | 
						|
	}
 | 
						|
	return n.Elem, res
 | 
						|
}
 | 
						|
 | 
						|
// search searches the tree for qname and type.
 | 
						|
func (n *Node) search(qname string) (*Node, bool) {
 | 
						|
	for n != nil {
 | 
						|
		switch c := Less(n.Elem, qname); {
 | 
						|
		case c == 0:
 | 
						|
			return n, true
 | 
						|
		case c < 0:
 | 
						|
			n = n.Left
 | 
						|
		default:
 | 
						|
			n = n.Right
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return n, false
 | 
						|
}
 | 
						|
 | 
						|
// Insert inserts rr into the Tree at the first match found
 | 
						|
// with e or when a nil node is reached.
 | 
						|
func (t *Tree) Insert(rr dns.RR) {
 | 
						|
	var d int
 | 
						|
	t.Root, d = t.Root.insert(rr)
 | 
						|
	t.Count += d
 | 
						|
	t.Root.Color = black
 | 
						|
}
 | 
						|
 | 
						|
// insert inserts rr in to the tree.
 | 
						|
func (n *Node) insert(rr dns.RR) (root *Node, d int) {
 | 
						|
	if n == nil {
 | 
						|
		return &Node{Elem: newElem(rr)}, 1
 | 
						|
	} else if n.Elem == nil {
 | 
						|
		n.Elem = newElem(rr)
 | 
						|
		return n, 1
 | 
						|
	}
 | 
						|
 | 
						|
	if mode == td234 {
 | 
						|
		if n.Left.color() == red && n.Right.color() == red {
 | 
						|
			n.flipColors()
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	switch c := Less(n.Elem, rr.Header().Name); {
 | 
						|
	case c == 0:
 | 
						|
		n.Elem.Insert(rr)
 | 
						|
	case c < 0:
 | 
						|
		n.Left, d = n.Left.insert(rr)
 | 
						|
	default:
 | 
						|
		n.Right, d = n.Right.insert(rr)
 | 
						|
	}
 | 
						|
 | 
						|
	if n.Right.color() == red && n.Left.color() == black {
 | 
						|
		n = n.rotateLeft()
 | 
						|
	}
 | 
						|
	if n.Left.color() == red && n.Left.Left.color() == red {
 | 
						|
		n = n.rotateRight()
 | 
						|
	}
 | 
						|
 | 
						|
	if mode == bu23 {
 | 
						|
		if n.Left.color() == red && n.Right.color() == red {
 | 
						|
			n.flipColors()
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	root = n
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// DeleteMin deletes the node with the minimum value in the tree.
 | 
						|
func (t *Tree) DeleteMin() {
 | 
						|
	if t.Root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	var d int
 | 
						|
	t.Root, d = t.Root.deleteMin()
 | 
						|
	t.Count += d
 | 
						|
	if t.Root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	t.Root.Color = black
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) deleteMin() (root *Node, d int) {
 | 
						|
	if n.Left == nil {
 | 
						|
		return nil, -1
 | 
						|
	}
 | 
						|
	if n.Left.color() == black && n.Left.Left.color() == black {
 | 
						|
		n = n.moveRedLeft()
 | 
						|
	}
 | 
						|
	n.Left, d = n.Left.deleteMin()
 | 
						|
 | 
						|
	root = n.fixUp()
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// DeleteMax deletes the node with the maximum value in the tree.
 | 
						|
func (t *Tree) DeleteMax() {
 | 
						|
	if t.Root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	var d int
 | 
						|
	t.Root, d = t.Root.deleteMax()
 | 
						|
	t.Count += d
 | 
						|
	if t.Root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	t.Root.Color = black
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) deleteMax() (root *Node, d int) {
 | 
						|
	if n.Left != nil && n.Left.color() == red {
 | 
						|
		n = n.rotateRight()
 | 
						|
	}
 | 
						|
	if n.Right == nil {
 | 
						|
		return nil, -1
 | 
						|
	}
 | 
						|
	if n.Right.color() == black && n.Right.Left.color() == black {
 | 
						|
		n = n.moveRedRight()
 | 
						|
	}
 | 
						|
	n.Right, d = n.Right.deleteMax()
 | 
						|
 | 
						|
	root = n.fixUp()
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Delete removes all RRs of type rr.Header().Rrtype from e. If after the deletion of rr the node is empty the
 | 
						|
// entire node is deleted.
 | 
						|
func (t *Tree) Delete(rr dns.RR) {
 | 
						|
	if t.Root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	el, _ := t.Search(rr.Header().Name)
 | 
						|
	if el == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	el.Delete(rr)
 | 
						|
	if el.Empty() {
 | 
						|
		t.deleteNode(rr)
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// DeleteNode deletes the node that matches rr according to Less().
 | 
						|
func (t *Tree) deleteNode(rr dns.RR) {
 | 
						|
	if t.Root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	var d int
 | 
						|
	t.Root, d = t.Root.delete(rr)
 | 
						|
	t.Count += d
 | 
						|
	if t.Root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	t.Root.Color = black
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) delete(rr dns.RR) (root *Node, d int) {
 | 
						|
	if Less(n.Elem, rr.Header().Name) < 0 {
 | 
						|
		if n.Left != nil {
 | 
						|
			if n.Left.color() == black && n.Left.Left.color() == black {
 | 
						|
				n = n.moveRedLeft()
 | 
						|
			}
 | 
						|
			n.Left, d = n.Left.delete(rr)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if n.Left.color() == red {
 | 
						|
			n = n.rotateRight()
 | 
						|
		}
 | 
						|
		if n.Right == nil && Less(n.Elem, rr.Header().Name) == 0 {
 | 
						|
			return nil, -1
 | 
						|
		}
 | 
						|
		if n.Right != nil {
 | 
						|
			if n.Right.color() == black && n.Right.Left.color() == black {
 | 
						|
				n = n.moveRedRight()
 | 
						|
			}
 | 
						|
			if Less(n.Elem, rr.Header().Name) == 0 {
 | 
						|
				n.Elem = n.Right.min().Elem
 | 
						|
				n.Right, d = n.Right.deleteMin()
 | 
						|
			} else {
 | 
						|
				n.Right, d = n.Right.delete(rr)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	root = n.fixUp()
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Min returns the minimum value stored in the tree.
 | 
						|
func (t *Tree) Min() *Elem {
 | 
						|
	if t.Root == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return t.Root.min().Elem
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) min() *Node {
 | 
						|
	for ; n.Left != nil; n = n.Left {
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// Max returns the maximum value stored in the tree.
 | 
						|
func (t *Tree) Max() *Elem {
 | 
						|
	if t.Root == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return t.Root.max().Elem
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) max() *Node {
 | 
						|
	for ; n.Right != nil; n = n.Right {
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// Prev returns the greatest value equal to or less than the qname according to Less().
 | 
						|
func (t *Tree) Prev(qname string) (*Elem, bool) {
 | 
						|
	if t.Root == nil {
 | 
						|
		return nil, false
 | 
						|
	}
 | 
						|
 | 
						|
	n := t.Root.floor(qname)
 | 
						|
	if n == nil {
 | 
						|
		return nil, false
 | 
						|
	}
 | 
						|
	return n.Elem, true
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) floor(qname string) *Node {
 | 
						|
	if n == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	switch c := Less(n.Elem, qname); {
 | 
						|
	case c == 0:
 | 
						|
		return n
 | 
						|
	case c <= 0:
 | 
						|
		return n.Left.floor(qname)
 | 
						|
	default:
 | 
						|
		if r := n.Right.floor(qname); r != nil {
 | 
						|
			return r
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// Next returns the smallest value equal to or greater than the qname according to Less().
 | 
						|
func (t *Tree) Next(qname string) (*Elem, bool) {
 | 
						|
	if t.Root == nil {
 | 
						|
		return nil, false
 | 
						|
	}
 | 
						|
	n := t.Root.ceil(qname)
 | 
						|
	if n == nil {
 | 
						|
		return nil, false
 | 
						|
	}
 | 
						|
	return n.Elem, true
 | 
						|
}
 | 
						|
 | 
						|
func (n *Node) ceil(qname string) *Node {
 | 
						|
	if n == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	switch c := Less(n.Elem, qname); {
 | 
						|
	case c == 0:
 | 
						|
		return n
 | 
						|
	case c > 0:
 | 
						|
		return n.Right.ceil(qname)
 | 
						|
	default:
 | 
						|
		if l := n.Left.ceil(qname); l != nil {
 | 
						|
			return l
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Copyright ©2012 The bíogo Authors. All rights reserved.
 | 
						|
 | 
						|
Redistribution and use in source and binary forms, with or without
 | 
						|
modification, are permitted provided that the following conditions are met:
 | 
						|
 | 
						|
* Redistributions of source code must retain the above copyright
 | 
						|
  notice, this list of conditions and the following disclaimer.
 | 
						|
* Redistributions in binary form must reproduce the above copyright
 | 
						|
  notice, this list of conditions and the following disclaimer in the
 | 
						|
  documentation and/or other materials provided with the distribution.
 | 
						|
* Neither the name of the bíogo project nor the names of its authors and
 | 
						|
  contributors may be used to endorse or promote products derived from this
 | 
						|
  software without specific prior written permission.
 | 
						|
 | 
						|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 | 
						|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | 
						|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | 
						|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | 
						|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
						|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
*/
 |