mirror of
				https://github.com/coredns/coredns.git
				synced 2025-10-31 10:13:14 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			579 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			579 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2012 The bíogo Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found at the end of this file.
 | |
| 
 | |
| // Package tree implements Left-Leaning Red Black trees as described by Robert Sedgewick.
 | |
| //
 | |
| // More details relating to the implementation are available at the following locations:
 | |
| //
 | |
| // http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
 | |
| // http://www.cs.princeton.edu/~rs/talks/LLRB/Java/RedBlackBST.java
 | |
| // http://www.teachsolaisgames.com/articles/balanced_left_leaning.html
 | |
| //
 | |
| // Heavily modified by Miek Gieben for use in DNS zones.
 | |
| package tree
 | |
| 
 | |
| // TODO(miek): locking? lockfree
 | |
| // TODO(miek): fix docs
 | |
| 
 | |
| import (
 | |
| 	"strings"
 | |
| 
 | |
| 	"github.com/miekg/dns"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	TD234 = iota
 | |
| 	BU23
 | |
| )
 | |
| 
 | |
| // Operation mode of the LLRB tree.
 | |
| const Mode = BU23
 | |
| 
 | |
| func init() {
 | |
| 	if Mode != TD234 && Mode != BU23 {
 | |
| 		panic("tree: unknown mode")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type Elem struct {
 | |
| 	m map[uint16][]dns.RR
 | |
| }
 | |
| 
 | |
| // newElem returns a new elem
 | |
| func newElem(rr dns.RR) *Elem {
 | |
| 	e := Elem{m: make(map[uint16][]dns.RR)}
 | |
| 	e.m[rr.Header().Rrtype] = []dns.RR{rr}
 | |
| 	return &e
 | |
| }
 | |
| 
 | |
| // Types returns the RRs with type qtype from e.
 | |
| func (e *Elem) Types(qtype uint16) []dns.RR {
 | |
| 	if rrs, ok := e.m[qtype]; ok {
 | |
| 		// TODO(miek): length should never be zero here.
 | |
| 		return rrs
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // All returns all RRs from e, regardless of type.
 | |
| func (e *Elem) All() []dns.RR {
 | |
| 	list := []dns.RR{}
 | |
| 	for _, rrs := range e.m {
 | |
| 		list = append(list, rrs...)
 | |
| 	}
 | |
| 	return list
 | |
| }
 | |
| 
 | |
| // Insert inserts rr into e. If rr is equal to existing rrs this is a noop.
 | |
| func (e *Elem) Insert(rr dns.RR) {
 | |
| 	t := rr.Header().Rrtype
 | |
| 	if e.m == nil {
 | |
| 		e.m = make(map[uint16][]dns.RR)
 | |
| 		e.m[t] = []dns.RR{rr}
 | |
| 		return
 | |
| 	}
 | |
| 	rrs, ok := e.m[t]
 | |
| 	if !ok {
 | |
| 		e.m[t] = []dns.RR{rr}
 | |
| 		return
 | |
| 	}
 | |
| 	for _, er := range rrs {
 | |
| 		if equalRdata(er, rr) {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rrs = append(rrs, rr)
 | |
| 	e.m[t] = rrs
 | |
| }
 | |
| 
 | |
| // Delete removes rr from e. When e is empty after the removal the returned bool is true.
 | |
| func (e *Elem) Delete(rr dns.RR) (empty bool) {
 | |
| 	t := rr.Header().Rrtype
 | |
| 	if e.m == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	rrs, ok := e.m[t]
 | |
| 	if !ok {
 | |
| 		return
 | |
| 	}
 | |
| 	for i, er := range rrs {
 | |
| 		if equalRdata(er, rr) {
 | |
| 			rrs = removeFromSlice(rrs, i)
 | |
| 			e.m[t] = rrs
 | |
| 			empty = len(rrs) == 0
 | |
| 			if empty {
 | |
| 				delete(e.m, t)
 | |
| 			}
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // TODO(miek): need case ignore compare that is more efficient.
 | |
| func Less(a *Elem, rr dns.RR) int {
 | |
| 	aname := ""
 | |
| 	for _, ar := range a.m {
 | |
| 		aname = strings.ToLower(ar[0].Header().Name)
 | |
| 		break
 | |
| 	}
 | |
| 	rname := strings.ToLower(rr.Header().Name)
 | |
| 	if aname == rname {
 | |
| 		return 0
 | |
| 	}
 | |
| 	if aname < rname {
 | |
| 		return -1
 | |
| 	}
 | |
| 	return 1
 | |
| }
 | |
| 
 | |
| // Assuming the same type and name this will check if the rdata is equal as well.
 | |
| func equalRdata(a, b dns.RR) bool {
 | |
| 	switch x := a.(type) {
 | |
| 	// TODO(miek): more types, i.e. all types.
 | |
| 	case *dns.A:
 | |
| 		return x.A.Equal(b.(*dns.A).A)
 | |
| 	case *dns.AAAA:
 | |
| 		return x.AAAA.Equal(b.(*dns.AAAA).AAAA)
 | |
| 	case *dns.MX:
 | |
| 		if x.Mx == b.(*dns.MX).Mx && x.Preference == b.(*dns.MX).Preference {
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // removeFromSlice removes index i from the slice.
 | |
| func removeFromSlice(rrs []dns.RR, i int) []dns.RR {
 | |
| 	if i >= len(rrs) {
 | |
| 		return rrs
 | |
| 	}
 | |
| 	rrs = append(rrs[:i], rrs[i+1:]...)
 | |
| 	return rrs
 | |
| }
 | |
| 
 | |
| // A Color represents the color of a Node.
 | |
| type Color bool
 | |
| 
 | |
| const (
 | |
| 	// Red as false give us the defined behaviour that new nodes are red. Although this
 | |
| 	// is incorrect for the root node, that is resolved on the first insertion.
 | |
| 	Red   Color = false
 | |
| 	Black Color = true
 | |
| )
 | |
| 
 | |
| // A Node represents a node in the LLRB tree.
 | |
| type Node struct {
 | |
| 	Elem        *Elem
 | |
| 	Left, Right *Node
 | |
| 	Color       Color
 | |
| }
 | |
| 
 | |
| // A Tree manages the root node of an LLRB tree. Public methods are exposed through this type.
 | |
| type Tree struct {
 | |
| 	Root  *Node // Root node of the tree.
 | |
| 	Count int   // Number of elements stored.
 | |
| }
 | |
| 
 | |
| // Helper methods
 | |
| 
 | |
| // color returns the effect color of a Node. A nil node returns black.
 | |
| func (n *Node) color() Color {
 | |
| 	if n == nil {
 | |
| 		return Black
 | |
| 	}
 | |
| 	return n.Color
 | |
| }
 | |
| 
 | |
| // (a,c)b -rotL-> ((a,)b,)c
 | |
| func (n *Node) rotateLeft() (root *Node) {
 | |
| 	// Assumes: n has two children.
 | |
| 	root = n.Right
 | |
| 	n.Right = root.Left
 | |
| 	root.Left = n
 | |
| 	root.Color = n.Color
 | |
| 	n.Color = Red
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // (a,c)b -rotR-> (,(,c)b)a
 | |
| func (n *Node) rotateRight() (root *Node) {
 | |
| 	// Assumes: n has two children.
 | |
| 	root = n.Left
 | |
| 	n.Left = root.Right
 | |
| 	root.Right = n
 | |
| 	root.Color = n.Color
 | |
| 	n.Color = Red
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // (aR,cR)bB -flipC-> (aB,cB)bR | (aB,cB)bR -flipC-> (aR,cR)bB
 | |
| func (n *Node) flipColors() {
 | |
| 	// Assumes: n has two children.
 | |
| 	n.Color = !n.Color
 | |
| 	n.Left.Color = !n.Left.Color
 | |
| 	n.Right.Color = !n.Right.Color
 | |
| }
 | |
| 
 | |
| // fixUp ensures that black link balance is correct, that red nodes lean left,
 | |
| // and that 4 nodes are split in the case of BU23 and properly balanced in TD234.
 | |
| func (n *Node) fixUp() *Node {
 | |
| 	if n.Right.color() == Red {
 | |
| 		if Mode == TD234 && n.Right.Left.color() == Red {
 | |
| 			n.Right = n.Right.rotateRight()
 | |
| 		}
 | |
| 		n = n.rotateLeft()
 | |
| 	}
 | |
| 	if n.Left.color() == Red && n.Left.Left.color() == Red {
 | |
| 		n = n.rotateRight()
 | |
| 	}
 | |
| 	if Mode == BU23 && n.Left.color() == Red && n.Right.color() == Red {
 | |
| 		n.flipColors()
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| func (n *Node) moveRedLeft() *Node {
 | |
| 	n.flipColors()
 | |
| 	if n.Right.Left.color() == Red {
 | |
| 		n.Right = n.Right.rotateRight()
 | |
| 		n = n.rotateLeft()
 | |
| 		n.flipColors()
 | |
| 		if Mode == TD234 && n.Right.Right.color() == Red {
 | |
| 			n.Right = n.Right.rotateLeft()
 | |
| 		}
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| func (n *Node) moveRedRight() *Node {
 | |
| 	n.flipColors()
 | |
| 	if n.Left.Left.color() == Red {
 | |
| 		n = n.rotateRight()
 | |
| 		n.flipColors()
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // Len returns the number of elements stored in the Tree.
 | |
| func (t *Tree) Len() int {
 | |
| 	return t.Count
 | |
| }
 | |
| 
 | |
| // Get returns the first match of rr in the Tree.
 | |
| func (t *Tree) Get(rr dns.RR) *Elem {
 | |
| 	if t.Root == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	n := t.Root.search(rr)
 | |
| 	if n == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return n.Elem
 | |
| }
 | |
| 
 | |
| func (n *Node) search(rr dns.RR) *Node {
 | |
| 	for n != nil {
 | |
| 		switch c := Less(n.Elem, rr); {
 | |
| 		case c == 0:
 | |
| 			return n
 | |
| 		case c < 0:
 | |
| 			n = n.Left
 | |
| 		default:
 | |
| 			n = n.Right
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // Insert inserts rr into the Tree at the first match found
 | |
| // with e or when a nil node is reached.
 | |
| func (t *Tree) Insert(rr dns.RR) {
 | |
| 	var d int
 | |
| 	t.Root, d = t.Root.insert(rr)
 | |
| 	t.Count += d
 | |
| 	t.Root.Color = Black
 | |
| }
 | |
| 
 | |
| func (n *Node) insert(rr dns.RR) (root *Node, d int) {
 | |
| 	if n == nil {
 | |
| 		return &Node{Elem: newElem(rr)}, 1
 | |
| 	} else if n.Elem == nil {
 | |
| 		n.Elem = newElem(rr)
 | |
| 		return n, 1
 | |
| 	}
 | |
| 
 | |
| 	if Mode == TD234 {
 | |
| 		if n.Left.color() == Red && n.Right.color() == Red {
 | |
| 			n.flipColors()
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch c := Less(n.Elem, rr); {
 | |
| 	case c == 0:
 | |
| 		n.Elem.Insert(rr)
 | |
| 	case c < 0:
 | |
| 		n.Left, d = n.Left.insert(rr)
 | |
| 	default:
 | |
| 		n.Right, d = n.Right.insert(rr)
 | |
| 	}
 | |
| 
 | |
| 	if n.Right.color() == Red && n.Left.color() == Black {
 | |
| 		n = n.rotateLeft()
 | |
| 	}
 | |
| 	if n.Left.color() == Red && n.Left.Left.color() == Red {
 | |
| 		n = n.rotateRight()
 | |
| 	}
 | |
| 
 | |
| 	if Mode == BU23 {
 | |
| 		if n.Left.color() == Red && n.Right.color() == Red {
 | |
| 			n.flipColors()
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	root = n
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // DeleteMin deletes the node with the minimum value in the tree.
 | |
| func (t *Tree) DeleteMin() {
 | |
| 	if t.Root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	var d int
 | |
| 	t.Root, d = t.Root.deleteMin()
 | |
| 	t.Count += d
 | |
| 	if t.Root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.Root.Color = Black
 | |
| }
 | |
| 
 | |
| func (n *Node) deleteMin() (root *Node, d int) {
 | |
| 	if n.Left == nil {
 | |
| 		return nil, -1
 | |
| 	}
 | |
| 	if n.Left.color() == Black && n.Left.Left.color() == Black {
 | |
| 		n = n.moveRedLeft()
 | |
| 	}
 | |
| 	n.Left, d = n.Left.deleteMin()
 | |
| 
 | |
| 	root = n.fixUp()
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // DeleteMax deletes the node with the maximum value in the tree.
 | |
| func (t *Tree) DeleteMax() {
 | |
| 	if t.Root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	var d int
 | |
| 	t.Root, d = t.Root.deleteMax()
 | |
| 	t.Count += d
 | |
| 	if t.Root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.Root.Color = Black
 | |
| }
 | |
| 
 | |
| func (n *Node) deleteMax() (root *Node, d int) {
 | |
| 	if n.Left != nil && n.Left.color() == Red {
 | |
| 		n = n.rotateRight()
 | |
| 	}
 | |
| 	if n.Right == nil {
 | |
| 		return nil, -1
 | |
| 	}
 | |
| 	if n.Right.color() == Black && n.Right.Left.color() == Black {
 | |
| 		n = n.moveRedRight()
 | |
| 	}
 | |
| 	n.Right, d = n.Right.deleteMax()
 | |
| 
 | |
| 	root = n.fixUp()
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // Delete removes rr from the tree, is the node turns empty, that node is deleted with DeleteNode.
 | |
| func (t *Tree) Delete(rr dns.RR) {
 | |
| 	if t.Root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	// If there is an element, remove the rr from it
 | |
| 	el := t.Get(rr)
 | |
| 	if el == nil {
 | |
| 		t.DeleteNode(rr)
 | |
| 		return
 | |
| 	}
 | |
| 	// delete from this element
 | |
| 	empty := el.Delete(rr)
 | |
| 	if empty {
 | |
| 		t.DeleteNode(rr)
 | |
| 		return
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // DeleteNode deletes the node that matches rr according to Less().
 | |
| func (t *Tree) DeleteNode(rr dns.RR) {
 | |
| 	if t.Root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	var d int
 | |
| 	t.Root, d = t.Root.delete(rr)
 | |
| 	t.Count += d
 | |
| 	if t.Root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.Root.Color = Black
 | |
| }
 | |
| 
 | |
| func (n *Node) delete(rr dns.RR) (root *Node, d int) {
 | |
| 	if Less(n.Elem, rr) < 0 {
 | |
| 		if n.Left != nil {
 | |
| 			if n.Left.color() == Black && n.Left.Left.color() == Black {
 | |
| 				n = n.moveRedLeft()
 | |
| 			}
 | |
| 			n.Left, d = n.Left.delete(rr)
 | |
| 		}
 | |
| 	} else {
 | |
| 		if n.Left.color() == Red {
 | |
| 			n = n.rotateRight()
 | |
| 		}
 | |
| 		if n.Right == nil && Less(n.Elem, rr) == 0 {
 | |
| 			return nil, -1
 | |
| 		}
 | |
| 		if n.Right != nil {
 | |
| 			if n.Right.color() == Black && n.Right.Left.color() == Black {
 | |
| 				n = n.moveRedRight()
 | |
| 			}
 | |
| 			if Less(n.Elem, rr) == 0 {
 | |
| 				n.Elem = n.Right.min().Elem
 | |
| 				n.Right, d = n.Right.deleteMin()
 | |
| 			} else {
 | |
| 				n.Right, d = n.Right.delete(rr)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	root = n.fixUp()
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // Min returns the minimum value stored in the tree.
 | |
| func (t *Tree) Min() *Elem {
 | |
| 	if t.Root == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return t.Root.min().Elem
 | |
| }
 | |
| 
 | |
| func (n *Node) min() *Node {
 | |
| 	for ; n.Left != nil; n = n.Left {
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // Max returns the maximum value stored in the tree.
 | |
| func (t *Tree) Max() *Elem {
 | |
| 	if t.Root == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return t.Root.max().Elem
 | |
| }
 | |
| 
 | |
| func (n *Node) max() *Node {
 | |
| 	for ; n.Right != nil; n = n.Right {
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // Prev returns the greatest value equal to or less than the rr according to Less().
 | |
| func (t *Tree) Prev(rr dns.RR) *Elem {
 | |
| 	if t.Root == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	n := t.Root.floor(rr)
 | |
| 	if n == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return n.Elem
 | |
| }
 | |
| 
 | |
| func (n *Node) floor(rr dns.RR) *Node {
 | |
| 	if n == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	switch c := Less(n.Elem, rr); {
 | |
| 	case c == 0:
 | |
| 		return n
 | |
| 	case c < 0:
 | |
| 		return n.Left.floor(rr)
 | |
| 	default:
 | |
| 		if r := n.Right.floor(rr); r != nil {
 | |
| 			return r
 | |
| 		}
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // Next returns the smallest value equal to or greater than the rr according to Less().
 | |
| func (t *Tree) Next(rr dns.RR) *Elem {
 | |
| 	if t.Root == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	n := t.Root.ceil(rr)
 | |
| 	if n == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return n.Elem
 | |
| }
 | |
| 
 | |
| func (n *Node) ceil(rr dns.RR) *Node {
 | |
| 	if n == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	switch c := Less(n.Elem, rr); {
 | |
| 	case c == 0:
 | |
| 		return n
 | |
| 	case c > 0:
 | |
| 		return n.Right.ceil(rr)
 | |
| 	default:
 | |
| 		if l := n.Left.ceil(rr); l != nil {
 | |
| 			return l
 | |
| 		}
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| /*
 | |
| Copyright ©2012 The bíogo Authors. All rights reserved.
 | |
| 
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions are met:
 | |
| 
 | |
| * Redistributions of source code must retain the above copyright
 | |
|   notice, this list of conditions and the following disclaimer.
 | |
| * Redistributions in binary form must reproduce the above copyright
 | |
|   notice, this list of conditions and the following disclaimer in the
 | |
|   documentation and/or other materials provided with the distribution.
 | |
| * Neither the name of the bíogo project nor the names of its authors and
 | |
|   contributors may be used to endorse or promote products derived from this
 | |
|   software without specific prior written permission.
 | |
| 
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 | |
| ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
| WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
| DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
| FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
| DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
| SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
| OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 |