Files
mealie/mealie/services/scraper/cleaner.py
Hayden 89d0cae51d refactor: rewrite cleaner functions for parsing recipe dicts (#1743)
* rewrite cleaner functions

* unify verbage

* try importing dep during check

* fix syntax

* allow override defaults

* satisfy mypy
2022-11-10 15:16:51 -09:00

441 lines
15 KiB
Python

import contextlib
import functools
import html
import json
import operator
import re
import typing
from datetime import datetime, timedelta
from slugify import slugify
MATCH_DIGITS = re.compile(r"\d+([.,]\d+)?")
""" Allow for commas as decimals (common in Europe) """
MATCH_ISO_STR = re.compile(
r"^P((\d+)Y)?((\d+)M)?((?P<days>\d+)D)?" r"T((?P<hours>\d+)H)?((?P<minutes>\d+)M)?((?P<seconds>\d+(?:\.\d+)?)S)?$",
)
""" Match Duration Strings """
MATCH_HTML_TAGS = re.compile(r"<[^<]+?>")
""" Matches HTML tags `<p>Text</p>` -> `Text` """
MATCH_MULTI_SPACE = re.compile(r" +")
""" Matches multiple spaces `Hello World` -> `Hello World` """
MATCH_ERRONEOUS_WHITE_SPACE = re.compile(r"\n\s*\n")
""" Matches multiple new lines and removes erroneous white space """
def clean(recipe_data: dict, url=None) -> dict:
"""Main entrypoint to clean a recipe extracted from the web
and format the data into an accectable format for the database
Args:
recipe_data (dict): raw recipe dicitonary
Returns:
dict: cleaned recipe dictionary
"""
recipe_data["description"] = clean_string(recipe_data.get("description", ""))
# Times
recipe_data["prepTime"] = clean_time(recipe_data.get("prepTime"))
recipe_data["performTime"] = clean_time(recipe_data.get("performTime"))
recipe_data["totalTime"] = clean_time(recipe_data.get("totalTime"))
recipe_data["recipeCategory"] = clean_categories(recipe_data.get("recipeCategory", []))
recipe_data["recipeYield"] = clean_yield(recipe_data.get("recipeYield"))
recipe_data["recipeIngredient"] = clean_ingredients(recipe_data.get("recipeIngredient", []))
recipe_data["recipeInstructions"] = clean_instructions(recipe_data.get("recipeInstructions", []))
recipe_data["image"] = clean_image(recipe_data.get("image"))
recipe_data["slug"] = slugify(recipe_data.get("name", ""))
recipe_data["orgURL"] = url
return recipe_data
def clean_string(text: str | list | int) -> str:
"""Cleans a string of HTML tags and extra white space"""
if not isinstance(text, str):
if isinstance(text, list):
text = text[0]
if isinstance(text, int):
text = str(text)
if not text:
return ""
text = typing.cast(str, text) # at this point we know text is a string
cleaned_text = html.unescape(text)
cleaned_text = MATCH_HTML_TAGS.sub("", cleaned_text)
cleaned_text = MATCH_MULTI_SPACE.sub(" ", cleaned_text)
cleaned_text = MATCH_ERRONEOUS_WHITE_SPACE.sub("\n\n", cleaned_text)
cleaned_text = cleaned_text.replace("</p>", "\n").replace("\xa0", " ").replace("\t", " ").strip()
return cleaned_text
def clean_image(image: str | list | dict | None = None, default="no image") -> str:
"""
image attempts to parse the image field from a recipe and return a string. Currenty
Supported Structures:
- `["https://exmaple.com"]` - A list of strings
- `https://exmaple.com` - A string
- `{ "url": "https://exmaple.com"` - A dictionary with a `url` key
Raises:
TypeError: If the image field is not a supported type a TypeError is raised.
Returns:
str: "no image" if any empty string is provided or the url of the image
"""
if not image:
return default
match image:
case str(image):
return image
case list(image):
return image[0]
case {"url": str(image)}:
return image
case _:
raise TypeError(f"Unexpected type for image: {type(image)}, {image}")
def clean_instructions(steps_object: list | dict | str, default: list | None = None) -> list[dict]:
"""
instructions attempts to parse the instructions field from a recipe and return a list of
dictionaries. See match statement for supported types and structures
Raises:
TypeError: If the instructions field is not a supported type a TypeError is raised.
Returns:
list[dict]: An ordered list of dictionaries with the keys `text`
"""
if not steps_object:
return default or []
match steps_object:
case [{"text": str()}]: # Base Case
return steps_object
case [{"text": str()}, *_]:
# The is the most common case. Most other operations eventually resolve to this
# match case before being converted to a list of instructions
#
# [
# {"text": "Instruction A"},
# {"text": "Instruction B"},
# ]
#
return [
{"text": _sanitize_instruction_text(instruction["text"])}
for instruction in steps_object
if instruction["text"].strip()
]
case {0: {"text": str()}} | {"0": {"text": str()}} | {1: {"text": str()}} | {"1": {"text": str()}}:
# Some recipes have a dict with a string key representing the index, unsure if these can
# be an int or not so we match against both. Additionally, we match against both 0 and 1 indexed
# list like dicts.
#
# {
# "0": {"text": "Instruction A"},
# "1": {"text": "Instruction B"},
# }
#
steps_object = typing.cast(dict, steps_object)
return clean_instructions([x for x in steps_object.values()])
case str(step_as_str):
# Strings are weird, some sites return a single string with newlines
# others returns a json string for some reasons
#
# "Instruction A\nInstruction B\nInstruction C"
# '{"0": {"text": "Instruction A"}, "1": {"text": "Instruction B"}, "2": {"text": "Instruction C"}}'
#
if step_as_str.startswith("[") or step_as_str.startswith("{"):
try:
return clean_instructions(json.loads(step_as_str))
except json.JSONDecodeError:
pass
return [
{"text": _sanitize_instruction_text(instruction)}
for instruction in step_as_str.splitlines()
if instruction.strip()
]
case [str(), *_]:
# Assume list of strings is a valid list of instructions
#
# [
# "Instruction A",
# "Instruction B",
# ]
#
return [
{"text": _sanitize_instruction_text(instruction)} for instruction in steps_object if instruction.strip()
]
case [{"@type": "HowToSection"}, *_] | [{"type": "HowToSection"}, *_]:
# HowToSections should have the following layout,
# {
# "@type": "HowToSection",
# "itemListElement": [
# {
# "@type": "HowToStep",
# "text": "Instruction A"
# },
# }
#
steps_object = typing.cast(list[dict[str, str]], steps_object)
return clean_instructions(functools.reduce(operator.concat, [x["itemListElement"] for x in steps_object], [])) # type: ignore
case _:
raise TypeError(f"Unexpected type for instructions: {type(steps_object)}, {steps_object}")
def _sanitize_instruction_text(line: str | dict) -> str:
"""
_sanitize_instructions_text does some basic checking if the value is a string or dictionary
and returns the value of the `text` key if it is a dictionary. The returned string is passed through the
`clean_string` function to remove any html tags and extra whitespace in a loop until the string
is stable.
Calling `clean_string` in a loop is necessary because some sites return a string with erroneously escaped
html tags or markup.
"""
if isinstance(line, dict):
# Some Recipes dotnot adhear to schema
try:
line = line["text"]
except Exception:
line = ""
if not line:
return ""
line = typing.cast(str, line)
clean_line = clean_string(line.strip())
while not clean_line == (clean_line := clean_string(clean_line)):
pass
return clean_line
def clean_ingredients(ingredients: list | str | None, default: list = None) -> list[str]:
"""
ingredient attempts to parse the ingredients field from a recipe and return a list of
Supported Structures:
- `["1 cup flour"]` - A list of strings
- `"1 cup flour"` - A string
- `None` - returns an empty list
Raises:
TypeError: If the ingredients field is not a supported type a TypeError is raised.
"""
match ingredients:
case None:
return default or []
case list(ingredients):
return [clean_string(ingredient) for ingredient in ingredients]
case str(ingredients):
return [clean_string(ingredient) for ingredient in ingredients.splitlines()]
case _:
raise TypeError(f"Unexpected type for ingredients: {type(ingredients)}, {ingredients}")
def clean_yield(yld: str | list[str] | None) -> str:
"""
yield_amount attemps to parse out the yield amount from a recipe.
Supported Structures:
- `"4 servings"` - returns the string unmodified
- `["4 servings", "4 Pies"]` - returns the last value
Returns:
str: The yield amount, if it can be parsed else an empty string
"""
if not yld:
return ""
if isinstance(yld, list):
return yld[-1]
return yld
def clean_time(time_entry: str | timedelta | None) -> None | str:
"""_summary_
Supported Structures:
- `None` - returns None
- `"PT1H"` - returns "1 hour"
- `"PT1H30M"` - returns "1 hour 30 minutes"
- `timedelta(hours=1, minutes=30)` - returns "1 hour 30 minutes"
Raises:
TypeError: if the type is not supported a TypeError is raised
Returns:
None | str: None if the time_entry is None, otherwise a string representing the time
"""
if not time_entry:
return None
match time_entry:
case str(time_entry):
if not time_entry.strip():
return None
try:
time_delta_instructionsect = parse_duration(time_entry)
return pretty_print_timedelta(time_delta_instructionsect)
except ValueError:
return str(time_entry)
case timedelta():
return pretty_print_timedelta(time_entry)
case datetime():
# TODO: Not sure what to do here
return str(time_entry)
case _:
raise TypeError(f"Unexpected type for time: {type(time_entry)}, {time_entry}")
def parse_duration(iso_duration: str) -> timedelta:
"""
Parses an ISO 8601 duration string into a datetime.timedelta instance.
Args:
iso_duration: an ISO 8601 duration string.
Raises:
ValueError: if the input string is not a valid ISO 8601 duration string.
"""
m = MATCH_ISO_STR.match(iso_duration)
if m is None:
raise ValueError("invalid ISO 8601 duration string")
# Years and months are not being utilized here, as there is not enough
# information provided to determine which year and which month.
# Python's time_delta class stores durations as days, seconds and
# microseconds internally, and therefore we'd have to
# convert parsed years and months to specific number of days.
times = {"days": 0, "hours": 0, "minutes": 0, "seconds": 0}
for unit in times.keys():
if m.group(unit):
times[unit] = int(float(m.group(unit)))
return timedelta(**times)
def pretty_print_timedelta(t: timedelta, max_components=None, max_decimal_places=2):
"""
Print a pretty string for a timedelta.
For example datetime.timedelta(days=2, seconds=17280) will be printed as '2 days 4 Hours 48 Minutes'.
Setting max_components to e.g. 1 will change this to '2.2 days', where the number of decimal
points can also be set.
"""
time_scale_names_dict = {
timedelta(days=365): "year",
timedelta(days=1): "day",
timedelta(hours=1): "Hour",
timedelta(minutes=1): "Minute",
timedelta(seconds=1): "Second",
timedelta(microseconds=1000): "millisecond",
timedelta(microseconds=1): "microsecond",
}
count = 0
out_list = []
for scale, scale_name in time_scale_names_dict.items():
if t >= scale:
count += 1
n = t / scale if count == max_components else int(t / scale)
t -= n * scale
n_txt = str(round(n, max_decimal_places))
if n_txt[-2:] == ".0":
n_txt = n_txt[:-2]
out_list.append(f"{n_txt} {scale_name}{'s' if n > 1 else ''}")
if out_list == []:
return "none"
return " ".join(out_list)
def clean_categories(category: str | list) -> list[str]:
if not category:
return []
match category:
case str(category):
if not category.strip():
return []
return [category]
case [str(), *_]:
return [cat.strip().title() for cat in category if cat.strip()]
case [{"name": str(), "slug": str()}, *_]:
# Special case for when we use the cleaner to cleanup a migration.
#
# [
# { "name": "Dessert", "slug": "dessert"}
# ]
#
return [cat["name"] for cat in category if "name" in cat]
case _:
raise TypeError(f"Unexpected type for category: {type(category)}, {category}")
def clean_tags(data: str | list[str]) -> list[str]:
"""
Gets keywords as a list or natural language list and returns
them into a list of strings of individual tags
"""
if not data:
return []
match data:
case [str(), *_]:
return [tag.strip().title() for tag in data if tag.strip()]
case str(data):
return clean_tags([t for t in data.split(",")])
case _:
return []
# should probably raise exception
# raise TypeError(f"Unexpected type for tags: {type(data)}, {data}")
def clean_nutrition(nutrition: dict | None) -> dict[str, str]:
"""
clean_nutrition takes a dictionary of nutrition information and cleans it up
to be stored in the database. It will remove any keys that are not in the
list of valid keys
Assumptionas:
- All units are supplied in grams, expect sodium which maybe be in milligrams
Returns:
dict[str, str]: If the argument is None, or not a dictionary, an empty dictionary is returned
"""
if not isinstance(nutrition, dict):
return {}
output_nutrition = {}
for key, val in nutrition.items():
with contextlib.suppress(AttributeError, TypeError):
if matched_digits := MATCH_DIGITS.search(val):
output_nutrition[key] = matched_digits.group(0).replace(",", ".")
if sodium := nutrition.get("sodiumContent", None):
if isinstance(sodium, str) and "m" not in sodium and "g" in sodium:
with contextlib.suppress(AttributeError, TypeError):
output_nutrition["sodiumContent"] = str(float(output_nutrition["sodiumContent"]) * 1000)
return output_nutrition